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Abstract

We report that N-acetyl-L-cysteine (NAC) treatment blocked induction of TNF-q, IL-1{, IFN-y
and iNOS in the CNS and attenuated clinical disease in the myelin basic protein induced model of
experimental allergic encephalomyelitis (EAE) in Lewis rats. Infiltration of mononuclear cells into
the CNS and induction of inflammatory cytokines and iINOS in multiple sclerosis (MS) and EAE have
been implicated in subsequent disease progression and pathogenesis. To understand the
mechanism of efficacy of NAC against EAE, we examined its effect on the production of cytokines
and the infiltration of inflammatory cells into the CNS. NAC treatment attenuated the
transmigration of mononuclear cells thereby lessening the neuroinflammatory disease. Splenocytes
from NAC-treated EAE animals showed reduced IFN-y production, a Thl cytokine and increased
IL-10 production, an anti-inflammatory cytokine. Further, splenocytes from NAC-treated EAE
animals also showed decreased nitrite production when stimulated in vitro by LPS. These
observations indicate that NAC treatment may be of therapeutic value in MS against the
inflammatory disease process associated with the infiltration of activated mononuclear cells into
the CNS.

l. Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease
marked by focal destruction of myelin, resulting in the
loss of oligodendrocytes and axons accompanied by an
inflammatory disease process [ 1-3]. Experimental autoim-
mune encephalomyelitis (EAE) is an animal model of MS.
Both MS and EAE are initiated by a T-cell mediated
autoimmune response (CD4+ and CD8+) against myelin
components followed by induction of inflammatory
mediators (chemokines and cytokines) that in turn define

the pattern of perivascular migration of activated T-cells
and mononuclear cells into the CNS [1-4].

The sequence of events associated with loss of oli-
godendrocytes and myelin in MS and EAE are not pre-
cisely understood. A complex interaction between the
mediators released by infiltrating cells and brain endog-
enous activated glial cells (astrocytes and microglia) are
believed to contribute towards the inflammatory disease
process and tissue damage [1-3,5-7]. Numerous studies
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have documented the expression of proinflammatory
cytokines (TNF-q, IL-1B, and IFN-y) in EAE and MS tissue
and increased levels of IFN-y and TNF-a levels in CNS or
plasma appear to predict relapse in MS [1-3,8]. On the
other hand, enhanced expression of anti-inflammatory
cytokines (IL-4, IL-10 and TGF-B) appears to mediate dis-
ease remission [1-3,9]. In MS brain, expression of iNOS by
activated astrocytes, microglia and macrophages is associ-
ated with the demyelinating regions [10-13]. The NO
derived from iNOS as ONOO:- (a reaction product of NO
and O,") is thought to play a role in the pathobiology of
MS and EAE. Peroxynitrite (ONOO") is able to modify
proteins, lipids and DNA resulting in damage to oli-
godendrocytes and myelin [1-3].

In spite of extensive research to develop pharmacothera-
peutic agents to ameliorate or reduce the number of exac-
erbations and subsequent progression of neurological
disability in MS, only a few therapies are available. Pres-
ently, IFN-B [14] and glatiramer acetate [15] are used in
treatment of MS but the therapeutic efficacy of these com-
pounds is limited by significant side effects. Recent studies
from our laboratory [16,17] and others [18] report the
potential of HMG-CoA reductase inhibitors (statins) in
attenuating the disease process in EAE. The efficacy
derives from a shift from an inflammatory Th1 response
towards an anti-inflammatory Th2-biased response
[16,18,19], blocked infiltration of mononuclear cells into
CNS [20] and attenuation of the induction of proinflam-
matory cytokines (TNF-o, IFN-y) and iNOS in the CNS of
EAE animals [17,20].

Reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS), generated as a result of the inflammatory proc-
ess, are believed to play a role in the pathobiology of EAE
and MS [10,12,13]. Cell culture studies showed that NAC,
a potent antioxidant, inhibited induction of TNF-o. and
iNOS and NO production in peritoneal macrophages, C6
glial cells and primary astrocytes, and blocked the activa-
tion of NFkB in peritoneal macrophages [21]. Accord-
ingly, oral administration of the oxidant scavenger NAC
was found to attenuate EAE clinical disease [22]. The
present studies were designed to elucidate the mechanism
of observed therapeutic efficacy of NAC against EAE.
These studies document that NAC treatment inhibited the
clinical disease by attenuating multiple events in EAE dis-
ease such as shifting the immune response from a Th1
bias, increasing IL-10 cytokine production by splenocytes,
attenuating transmigration of mononuclear cells, and
inhibiting induction of proinflammatory cytokines (TNF-
o, IL-1B, IFN-y) and iNOS in the CNS. Taken together
these results suggest NAC may be of therapeutic value for
cell-mediated autoimmune diseases such as multiple
sclerosis.

http://www.jautoimdis.com/content/2/1/4

2. Materials and methods

Chemicals

Myelin basic protein (MBP) isolated from guinea pig
brain and complete Freund's adjuvant (CFA) and pertus-
sis toxin were obtained from Sigma (St. Louis, MO). N-
acetyl-L-cysteine (NAC) was obtained from Calbiochem
(USA).

EAE induction and treatment with NAC in Lewis rats
Experiments were performed on female Lewis rats (Harlan
Laboratory, USA) weighing 250-300 g. Animals were
housed in the animal care facility of the Medical Univer-
sity of South Carolina, USA, throughout the experiment
and provided with food and water ad libitum. All experi-
mental protocols were reviewed and approved by the
Institutional Animal Care and Use Committee. EAE was
induced by subcutaneous injection of 50 ug of MBP (per
animal) emulsified in complete Freund's adjuvant in the
region of the footpad of the hind leg on day 1 followed by
a booster injection of the same on day 7. Additionally,
animals received 200 ng of pertussis toxin on days 0 and
1. Clinical signs in these rats manifest as ascending paral-
ysis resulting in EAE in most animals. The clinical signs of
EAE were scored by a masked investigator as 0 = normal;
1 = piloerection; 2 =loss in tail tonicity; 3 = hind leg paral-
ysis; 4 = paraplegia; and 5 = moribund. NAC treatment
was started on the first day of immunization (day 1) and
continued daily for the duration of the experiment. One
group of rats induced for EAE (n = 15) was given intraperi-
toneal injections of NAC (150 mg/kg body weight in PBS
with pH adjusted to 7.2 with NaOH). The second group
of rats (n = 15) was induced for EAE and treated with the
vehicle (PBS). Animals receiving only CFA were used as
the control group (n = 15). Untreated EAE animals were
sacrificed at clinical stage 4 (paraplegia) or 5 (moribund)
according to approved protocol. NAC treated animal
group was sacrificed at their peak clinical disease, which
was an average clinical score of 3, as determined from pre-
liminary studies. Tissue for histology and immunohisto-
chemistry and splenocytes were recovered for analysis.

Histopathology-Immunohistochemistry

The lumbar region of the spinal cord was dissected and
carefully processed for histological and immunohistolog-
ical examination (n = 12). Spinal cords were fixed in 10%
buffered formalin (Stephens Scientific, Riverdale, NJ),
embedded in paraffin and sectioned at 4 um thickness.
Sections were then stained for various cytokines and cell
markers.

Immunohistochemistry for TNF-o, IFN-y, IL-1B, iNOS
and nitrotyrosine was done as previously described [17].
Sections were incubated with appropriate antibodies
(1:100) overnight followed by fluorochrome conjugated
secondary IgG antibody (1:100, Sigma, St. Louis, MO)
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and mounted with Fluoromount G (EMS, Fort Washing-
ton, PA). Non-immune IgG was used as control primary
antibody. Sections were also incubated with TRITC or
FITC conjugated IgG without the primary antibody as neg-
ative control. Nuclear staining was performed using DAPI
(Sigma, St. Louis, MO) and hematoxylin and eosin (H&E)
staining was performed as described by Kiernan, J.A
(1990). All the sections were analyzed using an Olympus
microscope (Olympus BX60, Opelco, Dulles, VA) and
images were captured using a digital video camera (Olym-
pus U-CMAD-2, Optronics, Galeta, CA) and Adobe Pho-
toshop (Adobe Systems, CA).

Quantitative analysis of infiltrating cells

Infiltrating cells labeled with either ED1 or DAPI were
analyzed using Image-Pro Plus 4.0 (Media Cybernetics,
Maryland, USA) software. Individual sections were ana-
lyzed and the mean and SD were calculated for each group
(n = 12). The group means were compared and the signif-
icance of difference was determined. A p value of <0.05
was considered significant. This analysis was done using
the Regression Data Analysis tool of Microsoft Excel 4.0
(Microsoft, Redmount, WA).

Splenocyte Isolation and Cell Culture

Splenocytes were isolated from each animal group (Con-
trol, EAE, EAE+NAC) (n = 6) using Lympholyte®-Rat
(Cedarlane Laboratories Ltd., Hornby, Canada) density
separation medium according to manufacturer's instruc-
tion. The cell concentration in the suspension was
adjusted to 2 x 107 nucleated cells per ml or less, layered
on Lympholyte®-Rat density separation medium, and cen-
trifuged for 20 min at 1000 g - 1500 g at room tempera-
ture. The interface formed after the centrifugation was
then extracted using a Pasteur pipette, and transferred to a
new centrifuge tube. The transferred cells were then
diluted with medium, and centrifuged at 800 g for 10
min, washed twice with media, and cultured in 24-well
plates at a concentration of 5 x 10 cells/ml. The cells were
then stimulated in vitro with MBP (20 pug/mL), LPS (1 ug/
mL), or PHA (10 ug/mL), (Sigma, St. Louis, MO, USA), or
without any stimulants for 48 hrs. Each treatment was
performed in triplicate. At the end of the 48 hr. incubation
period, supernatants were collected and used for the
measurement of cytokines and nitrite.

ELISA

Cytokines (IFN-y and IL-10) were detected in culture
supernatants using commercially available OptEIA™ Kits
from PharMingen (San Diego, CA, USA) according to
manufacturer's instructions. The assay procedure is as fol-
lows: 96-well microplates were coated with capture anti-
body diluted in coating buffer overnight at 4°C. Plates
were then washed and blocked with assay diluent
(PharMingen, San Diego, CA, USA) for 1 hr at room tem-
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perature. Blocked plates were then washed, and the stand-
ards and samples added to the wells and incubated for 2
hr. at room temperature. At the end of incubation, plates
were washed and working detector (detection antibody +
Avidin-HRP) was added to the wells and incubated for 1
hr. at room temperature. Following incubation, plates
were washed and TMB substrate reagent was added
(PharMingen, San Diego, CA, USA) to the wells for 30
min. at room temperature in the dark. At the end of the
incubation, stop solution (1 M H3PO4) was added, and
absorbance read at 450 nm using a Spectramax® micro-
plate spectrophotometer (Molecular Devices, Sunnyvale,
CA, USA).

Nitrite measurement

Nitrite levels were determined on isolated splenocytes
with Griess reagent as previously described [23] with
minor modifications. One hundred pl of culture superna-
tant was allowed to react with 100 pul of Griess reagent and
incubated at room temperature for 15 min. The optical
density of the assay samples was measured at 570 nm
using a 96-well plate Spectramax® microplate reader with
SOFTMAX® software (Molecular Devices, Sunnyvale, CA,
USA). Fresh culture media served as the blank in all exper-
iments. Nitrite concentrations were calculated from a
standard curve derived from the reaction of NaNO, in the
assay.

3. Results

Effect of NAC on the Clinical Signs of Rats

Our goal was to investigate the effect of NAC on rats
induced for acute EAE. In the Lewis rat model MBP
induces an acute monophasic disease progression. As
shown in Fig. 1, clinical signs of EAE were evident in MBP-
treated Lewis female rats from the 8t day after first immu-
nization inducing an acute monophasic disease progres-
sion resulting in paraplegia (clinical score of 4) or
moribund state (clinical score of 5) on or around the 12th
day. However, the control animals receiving only com-
plete Freund's adjuvant did not show any disease symp-
toms (Fig. 1). Animals induced for EAE but given only the
vehicle closely followed the disease progression of MBP-
treated rats. Treatment of MBP-injected rats with NAC,
administered from the first day of immunization, pro-
tected the rats by attenuating the severity of disease pro-
gression (Fig. 1). NAC treated animals had milder clinical
signs (average clinical score of 3 as compared to 5 for
EAE).

Effect of NAC on the infiltration of inflammatory cells into
the spinal cord

The neuropathological changes in EAE and MS are associ-
ated with the blood brain barrier breakdown and infiltra-
tion by mononuclear cells [24,25]. Clinical disease in EAE
has been shown to correlate with the invasion of CNS by
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Figure |

The protective effect of NAC on the clinical signs of MBP
induced EAE in female Lewis rats. EAE was induced as
described in Materials and Methods. Data are given as aver-
age clinical disease score where 0 = normal; | piloerection; 2
= loss in tail tonicity; 3 = hind leg paralysis; 4 = paraplegia and
5 = moribund. Each group i.e., MBP (closed squares), MBP +
NAC (open circles) treated and control group (closed dia-
monds) had |5 animals (n = 15). EAE animals reached a peak
clinical score of 4 or 5 on or around the | Ith day after first
immunization and were sacrificed according to approved
protocol. NAC treated animals had milder clinical signs
(average clinical score of 3 as compared to 4 or 5 for EAE).
Control group did not show any clinical symptoms (clinical
score = 0).

mononuclear cells. These studies demonstrate that MBP-
induced EAE results in the induction of inflammatory dis-
ease, and treatment with NAC provides protection against
the EAE disease process. Therefore, in order to understand
the mechanism of therapeutic efficacy in EAE, we studied
the effect of NAC on the invasion of mononuclear cells
into the CNS in the EAE model.

The spinal cords of rats induced for EAE had heavy mono-
nuclear inflammatory infiltrates on the meningeal sur-
faces, perivascular areas and interstitial areas as seen by
H&E staining (Fig. 2a). EAE animals treated with NAC
showed infiltration of the CNS by inflammatory cells but
not to the extent as that seen in EAE animals. Further anal-
ysis of the cell infiltrates was performed to identify the
major cell type infiltrating the CNS in addition to the T-
cells. Immunohistochemical methods using ED1 (mono-
cyte/ macrophage marker) and DAPI (for nucleated cells)
were performed. As seen in Fig. 3, EAE animals showed
the most infiltration by ED1 positive cells. In contrast the
NAC-treated animals showed significantly less infiltration
by ED1 positive cells (reduced by an average of 46 per-
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cent). Quantitative analysis of cell infiltrates into the CNS
showed a significant amount of nucleated as well as ED1
positive cells in the CNS of EAE animals (Fig. 3b). In con-
trast, cell infiltration into the CNS of treated animals was
significantly less than that seen in EAE animals (reduced
by an average of 45 percent).

Effect of NAC on the expression of pro-inflammatory
cytokines and iNOS in the spinal cord

Since the major source of IL-1f in EAE is monocytes/mac-
rophages, as further evidence for macrophage infiltration
we examined the expression of IL-1f in the CNS. As evi-
denced by Fig. 4c, expression of IL-1p was evident in the
CNS of EAE induced animals and to a far lesser degree in
the NAC treated animals. IL-1 expression was also co-
localized to ED1 positive cells in EAE animal spinal cords
(data not shown). We also examined the expression of
proinflammatory cytokines (TNF-a and IFN-y), iNOS and
nitrotyrosine in the spinal cord sections from control,
EAE, and NAC-treated EAE rats using immunohistochem-
istry. As seen in figure 4a—e, MBP-induced EAE resulted in
the expression of TNF-o, IFN-y, IL-1f, IFN-y, iNOS and
nitrotyrosine. NAC treatment of EAE blocked the induc-
tion of these cytokines, iNOS, and nitrotyrosine similar to
control animals.

IFN-% IL-10 and nitrite production by splenocytes from
EAE and treated animals

In vitro splenocytes assays were performed to elucidate
whether NAC treatment could cause a shift to Th2-type T-
cell activity. In order to examine this effect, we studied the
effect of NAC on the major Th2 cytokine in the EAE dis-
ease process, IL-10. Splenocytes (8 x 10> cells per well)
were obtained from Control, EAE, and EAE + NAC treated
rats. Cells were stimulated in vitro with PHA (10 pg/ml, a
&b), MBP (20 ug/ml, a &b) or LPS (1 ug/ml, ¢) for 48 hrs.
The levels (pg/ml) of IFN-y and IL-10 in culture superna-
tants were measured using ELISA kits. As seen in Fig. 5
there was a significant increase in I[FN-y (5a) and decrease
in IL-10 (5b) in splenocytes from untreated EAE animals.
NAC treatment reduced IFN-y production by splenocytes
(by 59% for PHA and 40 % for MBP) and up-regulated IL-
10 production by EAE splenocytes (by 31% for PHA and
34% for MBP). Culture supernatants were collected and
accumulated nitrite, a stable product of NO production,
was measured using Griess reagent. NAC treatment also
inhibited the production of nitrite by LPS-stimulated
splenocytes by 71% as compared to splenocytes from EAE
animals. These studies indicate that NAC treatment
reduced IFN-y, a proinflammatory Thl cytokine and
increased IL-10, an anti-inflammatory cytokine.

4. Discussion
The evidence presented in this paper demonstrates that
NAC treatment reduced the inflammatory monocyte/
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EAE + NA

Figure 2

Inflammation and demyelination in sections of lumbar spinal cord from control, EAE and EAE + NAC (n = 12) treated Lewis
rats. The spinal cords were isolated at peak manifestation of the disease (i.e. clinical score 5 in EAE and 3 in EAE + NAC
treated animals). Photomicrographs represent regions from a) anterior cord b) central region and c) lateral cord. BV-denotes
blood vessel. A. H&E staining of cross-sections of lumbar spinal cord. Compared to the control group, Lewis rats with EAE
demonstrated gliosis (single arrow) and perivascular (double arrows), meningeal and interstitial chronic inflammatory infil-
trates. These effects were attenuated in sections from EAE+NAC treated animals. B. LFB-PAS staining of cross sections of lum-
bar spinal cord from control, EAE, and EAE+NAC treated Lewis rats. Compared to the control animals, the interface of
normal to demyelinating plaque (arrowhead) is notable in sections from the EAE group of animals. Myelin persists in the plaque
as globules in the cytoplasm of macrophages. The EAE+NAC group showed demyelination, but to a lesser degree than that
seen in the untreated group.
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Figure 3
Quantification of the inflammatory infiltrates by immunostaining of Lewis rat spinal cord (n = 12). Top panel: The spinal cords
were isolated when the animals were showing maximum clinical symptoms (i.e. for the EAE group clinical score of 5 and
EAE+NAC clinical score of 3). The sections were stained for ED| (macrophage/monocyte -green) and nuclei labeled with
DAPI (blue) as described in materials and methods. Spinal cords of rats induced for EAE demonstrated increased numbers of
EDI positive cells (green) and other glial and inflammatory cells (blue) in the CNS. Original magnification 200%. Bottom panel:
Quantification of the infiltrates showed significant numbers of glial and inflammatory cells (A: DAPI; nuclei stained blue) of
which many also were positive for macrophage/monocyte (B: ED; stained green) in the spinal cord of EAE animals as com-
pared to control and EAE + NAC treated animals.
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Figure 4

Immunofluorescent detection of IFN-y, TNF-q,, IL-1(, iNOS and nitrotyrosine in the CNS of female Lewis rats. The spinal
cords were isolated when the animals were showing maximum clinical symptoms (i.e. for the EAE group clinical score of 5 and
EAE+NAC clinical score of 3). Inmunostaining was performed in spinal cord sections (n = 12) of female Lewis rats as
described in Materials and Methods. EAE sections showed intense staining for IFN-y, TNF-qa, iNOS and nitrotyrosine with less
intense staining for IL-1 . Control and EAE + NAC sections showed minimal staining (original magnification 200%).
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Figure 5

IFN-y, IL-10 and nitrite production by splenocytes from control, EAE and treated animals. Splenocytes (8 % 105> cells per well)
were obtained from Control, EAE, and EAE + NAC treated rats when they were showing maximum clinical signs, and were
stimulated in vitro with PHA (10 pg/ml, a & b), MBP (20 pg/ml, a & b) or LPS (I pg/ml, c) for 48 hrs. Each treatment was per-
formed in triplicate for each animal group (n = 6). a and b: The levels (pg/ml) of IFN-y and IL-10 in culture supernatants were
measured using ELISA kits. There was a significant increase in IFN-y and decrease in IL-10 in splenocytes from untreated EAE
animals stimulated with PHA and MBP. EAE + NAC splenocytes showed reduced IFN-y production whereas IL-10 production
was increased. c: Culture supernatants were collected and accumulated nitrite, a stable product of NO production, was meas-
ured using Griess reagent. LPS-stimulated EAE splenocytes showed significantly higher levels of nitrite as compared to control
and this was reduced with NAC treatment.
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macrophage cells in the CNS of Lewis rats with acute
monophasic EAE. This in turn results in protection both
in terms of clinical and histopathological changes. These
conclusions are based on the following observations. 1)
NAC treatment of EAE rats reduced the severity of EAE
clinical symptoms, 2) attenuated the infiltration of mono-
nuclear cells into the CNS of EAE rats, 3) blocked the
induction of proinflammatory cytokines, iNOS and nitro-
tyrosine in the CNS, and 4) decreased proinflammatory
Th1 cytokine responses (IFN-y) from ex vivo splenocytes
while increasing anti-inflammatory cytokine production
(IL-10), and decreasing NO production in LPS-stimulated
splenocytes.

The infiltration of activated mononuclear cells into the
CNS of EAE is a critical event in the progression of the dis-
ease [26]. We have shown both qualitatively and quanti-
tatively that EDI1 positive leukocytes, namely
macrophage/monocytes, were significantly decreased in
animals treated with NAC as compared to the EAE ani-
mals. This decrease also correlated with the amelioration
of clinical disease in female Lewis rats. As compared to our
previous studies with lovastatin, NAC was not as effective
in blocking the transmigration of inflammatory cells
(NAC reduced by an average of 46%, while lovastatin
reduced by 85%) and hence did not delay the onset of dis-
ease as was achieved with lovastatin treatment (EAE, EAE
+ NAC onset day 8 versus EAE + lovastatin onset day 11).
However, NAC reduced the clinical scores to the same lev-
els as those obtained with lovastatin (both had clinical
scores maximum of 3). Other studies have also shown a
correlation between macrophage infiltration and EAE
clinical disease [27]. Inflammatory cytokine expression
(IFN-y, IL-1B, and TNF-a) was also inhibited in the CNS
of EAE animals treated with NAC. As a consequence, inhi-
bition of IFN-y expression in NAC treated animals could
in turn result in the reduced expression of MHC II
molecules thereby inhibiting the proliferation of T-lym-
phocytes as has been shown with statins [28,29], copoly-
mer 1 [30] and IFN-f [31].

Evidence indicates that iNOS while not a crucial factor for
induction of EAE, plays a major role in the progression of
the disease. The critical factors is the amount of NO pro-
duced that tips the balance in favor or against the patho-
genesis of EAE [32]. The peroxynitrite (ONOO-) produced
by reaction of NO and O, can damage membranes and
cells by nitrosylation of lipids, proteins and nucleic acids.
The induction of IL-1B and activation of NFxB were
shown to precede the induction of iNOS in ED1+ cells
[33]. Here we report that NAC blocked the induction of
IL-1B in the CNS of EAE animals. Ex vivo studies using
splenocytes isolated from control, EAE and EAE+NAC
treated animals showed that NAC inhibited I[FN-y produc-
tion while increasing IL-10 production. These changes
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coincided with a decreased NO production in the cultured
splenocytes. NAC treatment was not as effective as lovas-
tatin in altering cytokine production, but the reduction in
nitrite was identical. NAC treatment reduced IFN-y pro-
duction by splenocytes (NAC by 59% and 40%, LOV by
76% and 60% for PHA and MBP respectively) and up-reg-
ulated IL-10 production by EAE splenocytes (NAC by 31%
and 34%, LOV by 350% and 490% for PHA and MBP
respectively). NAC treatment also inhibited the produc-
tion of nitrite by LPS-stimulated splenocytes by 71% as
compared to splenocytes from EAE animals. These studies
indicate that NAC treatment inhibited a proinflammatory
Th1 biased cytokine response (IFN-y) while promoting an
increase in IL-10, an anti-inflammatory cytokine. Similar
shifts from Th1 cytokine profile to Th2 have been corre-
lated with disease recovery or improvement in both EAE
and MS [16,18,19,34-37].

The brain is particularly vulnerable to oxidative stress due
to its high consumption of oxygen and glucose, enrich-
ment in unsaturated fatty acids that are subject to
oxidation, and presence of regions enriched in iron and
ascorbate that are potent pro-oxidants for brain mem-
branes. Moreover, higher levels of glucose upregulate the
neuroinflammatory process measured as induction of
iNOS and NO production [38]. Coupled with the rela-
tively reduced antioxidant defenses in the brain, exposure
of brain cells to reactive oxygen or nitrogen species can be
detrimental and is thought to contribute to the pathogen-
esis of many brain disorders [39]. Oxidative stress is
important in the etiology of EAE and is thought to con-
tribute directly to CNS damage [7,40]. N-acetyl-L-cysteine
(NAC) as cysteine, a precursor of glutathione, is a potent
anti-oxidant. By scavenging superoxide radicals,
metallothionein and other antioxidants such as cysteine,
N-acetyl-cysteine and glutathione offer neuroprotection
[41]. In vivo NAC enhances hippocampal neuronal sur-
vival after transient forebrain ischemia in rats [42]. Partial
protection of neurons from the dopaminergic neurotoxin
N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was
achieved by four different antioxidants including NAC in
the mouse [43]. NAC also has a protective effect in pneu-
mococcal meningitis in the rat [44]. In vitro, NAC pro-
motes oligodendrocyte survival in the presence of toxic
stimuli or due to withdrawal of growth factors [45] and
maturation of oligodendrocytes [46]. NAC inhibits
Theiler's virus-induced NO and TNF-o. production by
murine SJL/J astrocyte cultures [47]. NAC treatment pre-
vented cytokine-induced decrease in GSH and degrada-
tion of sphingomyelin to ceramide, also blocked
cytokine-mediated ceramide production in rat primary
oligodendrocytes, microglia, and C6 glial cells, thereby
preventing cell death. These results suggest that intracellu-
lar levels of GSH may play a critical role in the regulation

Page 9 of 11

(page number not for citation purposes)



Journal of Autoimmune Diseases 2005, 2:4

of cytokine-induced generation of ceramide leading to
apoptosis of brain cells in demyelinating diseases. [48]

In summary, the ability of NAC to inhibit the induction of
proinflammatory cytokines and inhibit the transmigra-
tion of inflammatory cells into the CNS of EAE-induced
rats identifies it as a potential drug for the treatment of
neuroinflammatory diseases and possibly other Thi-
mediated autoimmune diseases. In addition, in vitro stud-
ies suggest that NAC may also promote survival of neu-
rons and oligodendrocytes and thereby potentially
facilitating remyelination. MS is a multifactorial disease
and the etiology of the disease in unknown. Conse-
quently, the targets for the prevention of the disease are
currently unknown. However the disease signs and causes
of these are known. For example an increase in pro-
inflammatory cytokines and iNOS activity has been
linked increase in clinical sign. As evidenced in the manu-
script, NAC can inhibit the production of inflammatory
cytokines and nitrotyrosine in the CNS during EAE patho-
genesis. Thus, NAC holds out to be a promising therapeu-
tic agent for the amelioration of MS/EAE.
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